Network Working GroupA. Hubert
Internet-DraftNetherlabs Computer Consulting BV.
Expires: November 2, 2006R. van Mook
 May 2006

Measures to prevent DNS spoofing


Status of this Memo

By submitting this Internet-Draft, each author represents that any applicable patent or other IPR claims of which he or she is aware have been or will be disclosed, and any of which he or she becomes aware will be disclosed, in accordance with Section 6 of BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as “work in progress.”

The list of current Internet-Drafts can be accessed at

The list of Internet-Draft Shadow Directories can be accessed at

This Internet-Draft will expire on November 2, 2006.

Copyright Notice

Copyright © The Internet Society (2006).


The current internet climate poses serious threats to the Domain Name System. In the interim period before the DNS protocol can be secured more fully, measures can be taken to make 'spoofing' a recursing nameserver can be made many orders of magnitude harder. This document sets out how to achieve this improved security.

Table of Contents

1.  Requirements and definitions
2.  Introduction
3.  Description of DNS spoofing
4.  Details
    4.1.  Matching the question
    4.2.  Matching the ID field
    4.3.  Matching the source address of the authentic answer
    4.4.  Matching the destination address of the authentic answer
    4.5.  Have the answer arrive before the authentic answer
5.  Birthday attacks
6.  Combined difficulty
7.  Discussion
8.  Countermeasures
9.  Security Considerations
10.  Acknowledgements
11.  References
§  Authors' Addresses
§  Intellectual Property and Copyright Statements


1. Requirements and definitions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119] (Bradner, S., “Key words for use in RFCs to Indicate Requirement Levels,” March 1997.).

This document uses the following definitions:

Client: typically a 'stub-resolver' on an end-user's computer
Resolver: a nameserver performing recursive service for clients, also known as a caching server
Question: a question sent out by a resolver, typically in a UDP packet
Answer: the answer sent back by an authoritative nameserver, typically in a UDP packet
Third party: any host other than the resolver or the intended recipient of a question. The third party may have access to a random authoritative nameserver, but has no access to packets transmitted by the Resolver.
Attacker: malicious third party.
Spoof: the activity of subverting the DNS process by getting a chosen answer accepted
Authentic answer: the answer that would be accepted if no third party interferes
Target domain: domain for which the attacker wishes to spoof in an answer
Fake data: answer chosen by the attacker


2. Introduction

This document describes several common problems in DNS implementations which, although previously recognized, remain largely unsolved. Besides briefly recapping these problems, this RFC contains rules that, if implemented, make complying nameservers vastly more resistant to the attacks described.

Almost every transaction on the internet involves the Domain Name System, which is described in [RFC1034] (Mockapetris, P., “Domain names - concepts and facilities,” November 1987.), [RFC1035] (Mockapetris, P., “Domain names - implementation and specification,” November 1987.) and beyond.

Additionally, it has recently become possible to acquire SSL certificates with no other confirmation of identity than the ability to respond to a verification email sent via SMTP ([RFC2821] (Klensin, J., “Simple Mail Transfer Protocol,” April 2001.)) - which generally uses DNS for its routing.

In other words, any party that (temporarily) controls the Domain Name System is in a position to reroute most kinds of Internet transactions, including the verification steps in acquiring an SSL certificate for a domain. This in turn means that even transactions protected by SSL could be diverted.

It is entirely conceivable that such rerouted traffic could be used to the disadvantage of internet users.

These and other developments have made the security and trustworthiness of DNS of renewed importance. Although the DNS community is working hard on finalising and implementing a cryptographically enhanced DNS protocol, steps should be taken to make sure that the existing use of DNS is as secure as possible within the bounds of the relevant standards.

It should be noted that the most commonly used resolver currently does not perform as well as possible in this respect, making this document of urgent importance.

A thorough analysis of risks facing DNS can be found in [RFC3833] (Atkins, D. and R. Austein, “Threat Analysis of the Domain Name System (DNS),” August 2004.).

This document expands on some of the risks mentioned in RFC 3833. Furthermore, it emphasises a number of existing rules and guidelines embodied in the relevant STDs and RFCs. The following also specifies new requirements to make sure the Domain Name System can be relied upon until a more secure protocol has been standardised and deployed.

It should be noted that even when all measures suggested below are implemented, protocol users are not protected against third parties with the ability to intercept, change or inject packets sent to the resolver.

There are protocol extensions under development that offer protection against these scenarios, see [RFC4033] (Arends, R., Austein, R., Larson, M., Massey, D., and S. Rose, “DNS Security Introduction and Requirements,” March 2005.) and beyond.

This memo is strictly aimed at improving the DNS during the interim period before more structural protocol enhancements can be put in place.


3. Description of DNS spoofing

When proper steps are taken it is feasible to 'spoof' the current deployed majority of caching servers with carefully crafted and timed DNS packets. Once spoofed, a caching server will repeat the data it wrongfully accepted, and make its clients contact the wrong, and possibly malicious, servers.

To understand how this process works it is important to know what makes a name server (and more specifically a caching server) accept an answer.

Paragraph 5.3.3 of [RFC1034] (Mockapetris, P., “Domain names - concepts and facilities,” November 1987.) presaged the present problem:

  The resolver should be highly paranoid in its parsing of responses.
  It should also check that the response matches the query it sent
  using the ID field in the response.

DNS data is accepted by a resolver if and only if:

  1. The question section of the reply packet is identical to that of a question packet currently waiting for an answer
  2. The ID field of the reply packet matches that of the question packet
  3. The answer comes from the same network address the question was sent to
  4. The answer comes in on the same network address, including port number, as the question was sent from
  5. It is the first answer to match the previous four conditions.

Note that the fifth condition can strictly speaking be derived from the first. It is included for clarity reasons only.

If a third party succeeds in meeting the first four conditions before the answer from the authentic answer does so, it is in a position to feed a resolver fabricated data. When it does so, we dub it an attacker, attempting to spoof in fake data.

All conditions mentioned above can theoretically be met, with the difficulty being a function of the resolver implementation and zone configuration.


4. Details

The previous paragraph discussed a number of requirements an attacker must match in order to spoof in manipulated (or fake) data. This section discusses the relative difficulties and how implementation defined choices impact the amount of work an attacker has to perform to meet said difficulties.

Some more details can be found in paragraph 2.2 of [RFC3833] (Atkins, D. and R. Austein, “Threat Analysis of the Domain Name System (DNS),” August 2004.).


4.1. Matching the question

Formally, there is no need for a nameserver to perform service except for its operator, its customers or more generally its users. Recently, open recursing nameservers have been used to amplify denial of service attacks.

In spite of this, many resolvers perform at least partial service for the whole world. This is partially out of lack of concern, and is reminiscent of the open relay SMTP service the net enjoyed up to the early 1990s. Some access providers may serve so many subnets that it is hard to enumerate these all in the DNS configuration.

Providing full service enables the third party to send the target resolver a question for the domain name it intends to spoof. On receiving this question, and not finding the answer in its cache, the resolver will transmit questions to relevant authoritative nameservers. This opens up a window of opportunity for getting fake answer data accepted.

Some operators restrict access by not recursing for unauthorised IP addresses, but only respond with data from the cache. This makes spoofing harder for a third party as it cannot then force the exact moment a question will be asked. It is still possible however to determine a time range when this will happen, because nameservers helpfully publish the decreasing TTL of entries in the cache, which indicate from which absolute time onwards a new query could be sent to refresh the expired entry.

The time to live of the 'target domain' determines how often a window of opportunity is available, which implies that a short TTL makes spoofing far more viable.

Note that the attacker might very well have authorised access to the target resolver by virtue of being a customer or employee of its operator.


4.2. Matching the ID field

The DNS ID field is 16 bits wide, meaning that if full use is made of all these bits, and if their contents are truly random, it will require on average 32768 attempts to guess. Anecdotal evidence suggests there are implementations utilising only 14 bits, meaning on average 8192 attempts will suffice.

Additionally, if the target nameserver can be forced into having multiple identical questions outstanding, the 'Birthday Attack' phenomenon means that any fake data sent by the attacker is matched against multiple outstanding questions, significantly raising the chance of success. Further details in Section 5 (Birthday attacks).


4.3. Matching the source address of the authentic answer

Most domains have two or three authoritative nameservers, which make matching the source address of the authentic answer very likely with even a naive choice having a double digit success rate.

Most recursing nameservers store relative performance indications of authoritative nameservers, which may make it easier to predict which nameserver would originally be queried - the that is likely to respond the quickest.

Generally, this condition requires at most two or three attempts before it is matched.

It should be noted that meeting this condition entails being able to transmit packets on behalf of the address of the authoritative nameserver. While several important documents ([RFC2827] (Ferguson, P. and D. Senie, “Network Ingress Filtering: Defeating Denial of Service Attacks which employ IP Source Address Spoofing,” May 2000.) and [RFC3013] (Killalea, T., “Recommended Internet Service Provider Security Services and Procedures,” November 2000.) specifically) direct internet access providers to prevent their customers from assuming IP addresses that are not assigned to them, these recommendations are not universally (nor even widely) implemented.


4.4. Matching the destination address of the authentic answer

Note that the destination address of the authentic answer is the source address of the original question.

The actual address of a recursing nameserver is generally known; the port used for asking questions is harder to determine. Most current resolvers pick a random port at startup and use this for all outgoing questions. In quite a number of cases the source port of outgoing questions is fixed at the traditional DNS assigned port of 53.

If the source port of the original question is random, but static, any authoritative nameserver under control of the attacker can be used to determine this port. This means that matching this conditions often requires no guess work.

Less common nameservers choose a random port per outgoing question. If this strategy is followed, this port number can be regarded as an additional ID field, again containing around 16 bits.

On average, around 32128 source ports would have to be tried before matching that of the original question, as ports below 1024 may be unavailable for use, leaving 64512 options.

It should be noted that a firewall will not prevent the matching of this address, as it will accept answers that (appear) to come from the correct address, offering no additional security.


4.5. Have the answer arrive before the authentic answer

Once any packet has matched the previous four conditions, no further answers should be accepted.

This means that the third party has a limited time in which to inject its spoofed answer, typically in the order of at most 100ms.

This time period can be far longer if the authentic authoritative nameservers are (briefly) overloaded by queries, perhaps by the attacker.


5. Birthday attacks

A curious mathematical phenomenon means that a group of 22 people suffices to have a more than even chance at having two or more members of the group share a birthday.

An attacker can benefit from this phenomenon if it can force the target resolver to have multiple outstanding questions at any one time for the same domain to the same authoritative server.

Any packet the attacker sends then has a much higher chance of being accepted because it only has to match any of the outstanding queries for that single domain. Compared to the birthday analogy above, of the group composed of questions and answers, the chance of having any of these share an ID rises quickly.

As long as small numbers of questions are sent out, the chance of successfully spoofing an anwers rises linearly with the number of outstanding questions for the exact domain and nameserver.

For larger numbers this effect is less pronounced.

More details are available in US-CERT [vu-457875] (United States CERT, “Various DNS service implementations generate multiple simultaneous queries for the same resource record,” November 2002.).


6. Combined difficulty

Given a known or static destination port, matching ID field, source and destination address requires on average in the order of 2 * 2^15 = 65000 packets, assuming a domain has 2 authoritative nameservers.

If the window of opportunity available is around 100ms, as assumed above, an attacker would need to be able to briefly transmit 650000 packets/s to have a 50% chance to get spoofed data accepted on the first attempt.

A realistic minimal DNS answer consists of around 80 bytes, including IP headers, making the packet rate above correspond to a respectable burst of 416Mb/s.

As of mid-2006, this kind of bandwidth was not common but not scarce either, especially among those in a position to control many servers.

These numbers change when a window of a full second is assumed, possibly because the arrival of the authentic answer can be prevented by overloading the bonafide authoritative servers with decoy questions. This reduces the needed bandwith to 42 Mb/s.

If in addition the attacker is granted more than a single chance and allowed up to 60 minutes of work on a domain with a time to live of 300 seconds, a meagre 4Mb/s suffices for a 50% chance at getting fake data accepted. Once equipped with a longer time, matching condition 1 mentioned above is straightforward - any popular domain will have been queried a number of times within this hour, and given the short TTL, this would lead to questions to authoritative nameservers, opening windows of opportunity.

Assume the following symbols are used:

I: Number distinct IDs available (maximum 65536)
P: Number of ports used (maximum around 64000, but often 1)
N: Number of authoritative nameservers for a domain (averages around 2.5)
F: Number of 'fake' packets sent by the attacker
R: Number of packets sent per second by the attacker
W: Window of opportunity, in seconds. Bounded by the response time of the authoritative servers (often 0.1s)
D: Average number of identical outstanding questions of a resolver (typically 1, see Section 5 (Birthday attacks))
A: Number of attempts, one for each window of opportunity

The probability of spoofing a resolver is equal to amount of fake packets that arrive within the window of opportunity, divided by the size of the problem space.

When the resolver has 'D' multiple identical outstanding questions, each fake packet has a proportionally higher chance of matching any of these questions. This assumption only holds for small values of 'D'.

In symbols, if the probability of being spoofed is denoted as P_s:

           D * F
P_s =    ---------
         N * P * I

It is more useful to reason not in terms of aggregate packets but to convert to packet rate, which can easily be converted to bandwidth if needed.

If the Window of opportunity length is 'W' and the attacker can send 'R' packets per second, the number of fake packets 'F' that are candidates to be accepted is:

                       D * R * W
F = R * W  ->   P_s  = ----------
                       N * P * I

Finally, to calculate the combined chance 'P_cs' of spoofing over a chosen time period 'T', it should be realised that the attacker has a new window of opportunity each time the TTL 'TTL' of the target domain expires. This means that the number of attempts 'A' is equal to 'T / TTL'.

To calculate the combined chance of at least one success, the following formula holds:

                                                     (T / TTL)
                      A          (       D * R * W )
P_cs = 1 - ( 1 - P_s )    =  1 - ( 1  -  --------- )
                                 (       N * P * I )

When common numbers (as listed above) for D, W, N, P and I are inserted, this formula reduces to:

                            (T / TTL)
           (         R    )
P_cs = 1 - ( 1 -  ------- )
           (      1638400 )

From this formula it can be seen that, if the nameserver implementation is unchanged, only raising the TTL offers protection. Raising N, the number of authoritative nameservers, is not feasible beyond a small number.

For the degenerate case of a zero-second TTL, a window of opportunity opens for each question asked, making the effective TTL equal to 'W' above, the response time of the authoritative server.


7. Discussion

The calculations above indicate the relative ease with which DNS data can be spoofed. For example, using the formula derived earlier on a domain with a 3600 second TTL, an attacker sending 7000 fake answer packets/s (a rate of 4.5Mb/s), stands a 10% chance of spoofing a record in the first 24 hours, which rises to 50% after a week.

For a domain with a TTL of 60 seconds, the 10% level is hit after 24 minutes, 50% after less than 3 hours, 90% after around 9 hours.

Note that the attacks mentioned above can be detected by watchful server operators - an unexpected incoming stream of 4.5mbit/s of packets might be noticed.

An important assumption however in these calculations is a known or static destination port of the authentic answer.

If that port number is unknown and needs to be guessed as well, the problem space expands by a factor of 64000, leading the attacker to need in excess of 285Gb/s to achieve similar success rates.

Such bandwidth is not generally available, nor expected to be so in the foreseeable future.

Note that some firewalls may need reconfiguring if they are currently setup to only allow outgoing queries from a single DNS source port.


8. Countermeasures

Given the above, a resolver MUST:

A resolver SHOULD offer diagnostics that enable the operator to determine a spoofing attempt is under way.

Operators SHOULD attempt to restrict recursing service, either full or partial, to authorised users.

A resolver MAY use heuristics to detect an excess of unacceptable answers and take measures if it believes an attempt is made to spoof it.

Futhermore, zone operators SHOULD NOT configure the Time To Live of domains to be lower than realistically needed for proper operations.


9. Security Considerations

This document directly impacts the operational security of the Domain Name System, readers are urged to implement its recommendations.


10. Acknowledgements

Although any mistakes remain our own, the authors gratefully acknowledge the help and contributions of:

Stephane Bortzmeyer,

Sean Leach,

Norbert Sendetzky

Furthermore, it should be noted that source port randomisation was first implemented by Dan J. Bernstein.


11. References

[RFC1034] Mockapetris, P., “Domain names - concepts and facilities,” STD 13, RFC 1034, November 1987.
[RFC1035] Mockapetris, P., “Domain names - implementation and specification,” STD 13, RFC 1035, November 1987.
[RFC2119] Bradner, S., “Key words for use in RFCs to Indicate Requirement Levels,” BCP 14, RFC 2119, March 1997 (TXT, HTML, XML).
[RFC2821] Klensin, J., “Simple Mail Transfer Protocol,” RFC 2821, April 2001.
[RFC2827] Ferguson, P. and D. Senie, “Network Ingress Filtering: Defeating Denial of Service Attacks which employ IP Source Address Spoofing,” BCP 38, RFC 2827, May 2000.
[RFC3013] Killalea, T., “Recommended Internet Service Provider Security Services and Procedures,” BCP 46, RFC 3013, November 2000.
[RFC3833] Atkins, D. and R. Austein, “Threat Analysis of the Domain Name System (DNS),” RFC 3833, August 2004.
[RFC4033] Arends, R., Austein, R., Larson, M., Massey, D., and S. Rose, “DNS Security Introduction and Requirements,” RFC 4033, March 2005.
[vu-457875] United States CERT, “Various DNS service implementations generate multiple simultaneous queries for the same resource record,” VU 457875, November 2002.


Authors' Addresses

  bert hubert
  Netherlabs Computer Consulting BV.
  Donkerstraat 9a
  Delft 2611 TE
  The Netherlands
  Remco van Mook
  Auke Vleerstraat 1
  Enschede 7521 PE
  The Netherlands


Intellectual Property Statement

Disclaimer of Validity

Copyright Statement