Welcome

On faster application startup times. Cache stuffing, seek
profiling and adaptive preloading

bert hubert <bert.hubert@netherlabs.nl>
Netherlabs Computer Consulting BV
PowerDNS.COM BV
http://netherlabs.nl - http://ds9a.nl - http://wiki.powerdns.com

Thanksto: Seth Arnold, Zwane Mwalkambo, Con Kolivas,
Alexn, Relayfs people (IBM)

I Outline of presentation

e Some theory of how disks appear to work
I * Problem statement: know what to solve
e Application startup pessimization: on-
demand loading
* Prior art (Andrew KP' Morton, Linus
Torvalds, Windows 95 (Intel))
* New measurements

e Solutions / Discussion

I 50,000 foot view of disks

I * Not as simple as they appear

e Sources of latency

- PCI/IDE
- Head positioning

- Rotational — waiting for data to pass under
the head
- Interrupt, copying data to userspace

 Manufacturers not being very open

I Typical disk performance claims

* High-end drive: full-stroke latency of 8ms,
I track-to-track in 0.3ms
* Silent about rotational latency, we're ass-u-
med to know.
e Calculation: Average laptop disk,
5400RPM: 0.5*60/5400 = 5.6ms
* Real life 1Is more like 20ms (!)
 Equivalent to reading 5 megabytes contig.

I Our challenge

* While we' generally achieve month- or
I year-long uptimes and have staggering
amounts of memory, others benefit less

from the page-cache.

e Starting an application should not wait on
i/o for much longer than the amount of
data it needs would've taken to read
linearly

My limited goal Iin all this

Provide patch to do instrumenting

Provide tools to interpret results
Make pretty graphs

Allow other people to improve Linux based
ONn Serious measurements

Bonus: might also be useful to i/o
scheduler people

Application startup

"On-demand loading' — hip in the 80s.
Means: mmap executable and its libraries
into memory, and execute away

"Missing data' will cause page faults, which
will trigger actual disk reads — slick, but:
Data access patterns determined by whims
of the linker and call-graph of process!

Prior art

Several distributions now preload binaries

akpm has studied contents of the page cache, and
attempted to restore it — to no avall

Arjen van de Ven: readahead doesn't help

Linus has stated that the only right' way of doing
this is to stuff the page cache from linearly read
data — dangerous

It appears Windows speculatively loads data that
was touched on previous boot

What we need I1s DATA

e Saying which rhymes in Dutch to measure
IS to know' — hence our strong scientific
achievements :-)

* Anything else Iis mental masturbation
(according to Linus)

* What you don't measure gets subverted
(after a while)

Measurements

Problem: the reads we care about are un-
straceable’

So, we Instrument the bio-layer

Initially performed using block _dump of
laptop_mode, combined with audit
subsystem

Problem: this gives blocks on devices, not
file names

I Measurements ||

e Solution: Instrument sys open as well
I * Use FIBMAP on all opened files to make
reverse map of block->file
* To do all this In userspace, transfer data
using relayfs to C++ application
* Tiny remaining problem, 'ended' bios are
device-relative, they start partition-relative

I Measurements |lI

* Validate traces (count that no bio-requests
I are duplicates, or end twice), confidence In
data is high
e Some duplicate bios: fsck & kernel itself
* Timestamping done using |iffles + tsc,
measurements with equal jiffies are shifted

tsc for sub-HZ pretty graphs
* And without further ado: GNUPLOT!

2.82e+B6 -

2,.8e+06

2.78e+B6

2.76e+86 [

2.74e+B6

HD cache for adjacent reads

bio initiation >.|<
bio end .
° N
L L L L 1 L 1
19388 19488 19428 19448 19468 19488 19588

X-axis: ms
Y-axis: sector

Note the cluster
of “fast bios'
around 19400ms

— the disk had
them

Above is typical

I ‘Storage 1s a lie' (Andre Hedrick)

8e+d6

Ge+B6

de+06 [

2e+86 [

T
bio initiation
bio end

.

1
1668

|
15606

|
200840

X-axis: ms
Y -axis: sectors

This depicts writes
performed by the
kernel itself — most
likely ext3

Note how the
initial writes are
'Instantaneous'!

(1s this bad?)

8e+06 -

Ge+B6

de+B6 -

2e+06 -

Mozilla startup + simulation

*
*
e
#*
re
o3 ¥ Wy H

#*

#

HE ¥
T

3

¥
¥

#

#*

bio subnit L+
h!'.m:l *

sorted sinulation *

HE B

595088

Quiet!

1
68886808

Again!

1
6858808

1
61860808

1
6150808

X-ax1Ss: ms
y-axis: sectors

Mozilla startup on
slow laptop:
20 seconds

The blue line 1s an
artist's impression of
how things could be,
if requests were
sorted.

Note empty areas!

I More mozilla statistics

* Took 20 seconds, of which 5 were purely
I CPU-bound

e 042 different bios

* 19 megabytes (effective rate. 1MB/s)

* In 84 extents (defined as within 5

megabytes)
* 6 larger than 1MB, comprising 12MB
* Massive chances!

2et+B7

Openoffice: counter-example

¥*
»* ¥
W W M
*
*
*
* *
W B N

1
28088

1
&aoa

X-axis: ms
y-axis: sectors

Note high locality-
of-reference

Second startup of
OO is still slow.

IO 1s only partly
to blame here.

However: stunning
105MB of reads!

Openoffice: requests In flight

rinflight.dat’ +

X-axis: seconds
y-axis: number
of bios in flight

Openoffice: moving backwards

2.15e+86 -

2.1e+86

2.85e+86

T
bio initiation %
bio end T

R . aand

1
agea

1
24858

1
9968

1
9958

X-ax1is: ms
y-axis: sectors
Highly zoomed,

so the sectors are

(somewhat) close
together.

1 Note the

backwards sense.

| Note cache hits

right below.

Typical bootup

Debian Woody, icewm desktop, startup

including Mozilla: 50 megabytes, 30

excluding

Ubuntu Hoary', including Firefox: 150

megabytes
Amazingly, both WRI

E In excess of 10

megabytes during boot — atime?

noatime shaves 10 seconds off boot time

80

inr

68

08

48

30

28

18

Latency histogram

I dizk latencglcuunts

148

15

208

25

38

Lots of 0-ms
hits elided
Pretty
healthy graph

458

488

358

3aa

258

208

158

188

b8

disk latencd counts

a

28

| |
48

68

48

1488

0-ms ==
IDE disk cache
hit

disﬂ latency cuhnts

“Room for study”
Part of this
1s disk-parking

1.6 4

1.4 F .

H'B 1 | 1 1 | 1
188 2008 380 4808 508 6808 FLi L g0

I Now what?

* Easy way (nhot that easy): figure out which
I sectors correspond to which files
* Coalesce requests based on statistics
measured earlier about disk-cache
behaviour
* Fire off big reads (linear. AIO only does
O_DIRECT, no page cache!)
* 1) Fire up program 2) ?? .. 3)Profit!!

I The bad news

* This works and generates rather
I iImpressive speedup to Firefox startup

* Bootup pretty slow though when we take
priming time Into account

e Turns out many Dbio-requests can't be
traced back to files, because:

* Filesystem Internals (dentries, block
mappings) also cause reads

The good news!

* Several groups are working on this
problem

* Glven good measurements, solutions
should be forthcoming

* There are some oddities that appear
highly fixeable — sometimes Linux tries to
read from disk backwards!

Some possible solutions 1

The royal solution: stuff page cache with blocks
and dentries — requires careful coordination
though. Write out on shutdown.

Unionfs a ramdisk over the / so a number of
core files are in memory and read Iin one
stretch

Instrument exec calls and 'read-ahead’
intelligently, based on bios seen

Reorder binaries so they are read in consecutive
order

Possible solutions 2

* |If there Is still such a thing as a buffer-
cache, make submit bio check it, and
return immediately

* We can then just concentrate on touching
the same sectors as we saw previously

* Does waste memory though

aum
aum

dum
Aval

pstats: C
pstats --

Toolset

umps everything

nookmark: set bookmark

pstats --since: dump since bookmark

able: RSN (end of this week)
* 40 line kernel patch + relayfs

e C++ stuff (does not burn the eyes)

* Gnuplot

Further information

GPL tools will be available on
nttp://ds9a.nl/diskstat/
nttp://netherlabs.nl/

nert.hubert@netherlabs.nl

BoF Friday on Instrumenting the kernel

- “Locating system problems with dynamic
Instrumentation” - Vara Prasad (IBM)

I'll be around all week!

